Skip to main content

Overview

Journium’s A/B testing platform allows you to test different versions of your website elements to determine which performs better. Make data-driven decisions to optimize conversion rates, reduce bounce rates, and improve user engagement with statistical confidence.

Getting Started with A/B Testing

What You Can Test

Journium allows you to test virtually any element on your website:

Headlines & Copy

Test different headlines, descriptions, and call-to-action text

Button Design

Experiment with colors, sizes, text, and placement of buttons

Page Layout

Test different page structures and content arrangements

Forms

Optimize form fields, length, and validation messages

Images & Media

Test different hero images, videos, and visual elements

Pricing

Experiment with pricing strategies and presentation

Basic A/B Test Setup

// Initialize A/B test with Journium
Journium.createTest({
  testName: 'homepage_hero_button',
  description: 'Test CTA button color on homepage hero section',
  
  // Define variants
  variants: [
    {
      name: 'control',
      description: 'Current blue button (#1E40AF)',
      trafficAllocation: 50 // 50% of traffic
    },
    {
      name: 'treatment',
      description: 'New orange button (#EA580C)', 
      trafficAllocation: 50 // 50% of traffic
    }
  ],
  
  // Success metrics
  primaryMetric: 'conversion_rate',
  secondaryMetrics: ['click_through_rate', 'bounce_rate'],
  
  // Test configuration
  minimumSampleSize: 1000,
  minimumDetectableEffect: 10, // 10% improvement
  statisticalSignificance: 95,
  maxDuration: 30 // days
});

Implementing Test Variants

// Check which variant the user should see
const variant = Journium.getTestVariant('homepage_hero_button');

// Apply the appropriate treatment
if (variant === 'treatment') {
  // Show orange button
  document.getElementById('hero-cta').style.backgroundColor = '#EA580C';
  document.getElementById('hero-cta').textContent = 'Start Your Free Trial';
} else {
  // Show control (blue button)  
  document.getElementById('hero-cta').style.backgroundColor = '#1E40AF';
  document.getElementById('hero-cta').textContent = 'Get Started';
}

// Track the exposure
Journium.track('ab_test_exposure', {
  test_name: 'homepage_hero_button',
  variant: variant,
  user_id: getCurrentUserId(),
  session_id: getSessionId()
});

Advanced Testing Strategies

Multivariate Testing

Test multiple elements simultaneously to understand interactions:
const multivariateTest = {
  testName: 'checkout_optimization',
  description: 'Test multiple checkout page elements',
  
  variables: [
    {
      name: 'headline',
      variants: [
        'Complete Your Purchase',
        'Secure Checkout',
        'Almost Done!'
      ]
    },
    {
      name: 'button_color',
      variants: ['blue', 'green', 'orange']
    },
    {
      name: 'trust_signals',
      variants: ['badges_visible', 'badges_hidden']
    }
  ],
  
  // This creates 3 × 3 × 2 = 18 different combinations
  trafficAllocation: 'equal', // Equal traffic to all variants
  primaryMetric: 'checkout_completion_rate'
};

Sequential Testing

Run tests in sequence to compound improvements:
const testingSequence = [
  {
    phase: 1,
    test: 'homepage_headline',
    duration: 2, // weeks
    expectedUplift: 15
  },
  {
    phase: 2,
    test: 'cta_button_design', 
    duration: 2,
    expectedUplift: 12,
    baseline: 'phase_1_winner' // Use phase 1 results as new baseline
  },
  {
    phase: 3,
    test: 'social_proof_placement',
    duration: 3,
    expectedUplift: 8,
    baseline: 'phase_2_winner'
  }
];

// Expected compound improvement: ~38% total uplift

Personalized Testing

Run different tests for different user segments:
const personalizedTesting = {
  segments: [
    {
      name: 'new_visitors',
      criteria: 'session_count === 1',
      tests: [
        {
          name: 'new_user_onboarding',
          focus: 'explanation_and_trust_building'
        }
      ]
    },
    {
      name: 'returning_customers',
      criteria: 'purchase_count > 0',
      tests: [
        {
          name: 'loyalty_program_promotion',
          focus: 'retention_and_upselling'
        }
      ]
    },
    {
      name: 'mobile_users',
      criteria: 'device_type === "mobile"',
      tests: [
        {
          name: 'mobile_checkout_optimization',
          focus: 'touch_friendly_design'
        }
      ]
    }
  ]
};

Test Implementation Patterns

React Component Testing

import { useJourniumTest } from '@journium/react';

function HeroSection() {
  const { variant, isReady } = useJourniumTest('homepage_hero_test');
  
  if (!isReady) {
    return <div>Loading...</div>;
  }
  
  const getButtonProps = () => {
    switch (variant) {
      case 'variant_a':
        return {
          color: 'blue',
          text: 'Get Started',
          size: 'large'
        };
      case 'variant_b':
        return {
          color: 'orange', 
          text: 'Start Free Trial',
          size: 'large'
        };
      case 'variant_c':
        return {
          color: 'green',
          text: 'Try It Now',
          size: 'extra-large'
        };
      default:
        return {
          color: 'blue',
          text: 'Get Started', 
          size: 'large'
        };
    }
  };
  
  const buttonProps = getButtonProps();
  
  return (
    <section className="hero">
      <h1>Transform Your Business Today</h1>
      <p>Join thousands of companies that trust our solution</p>
      <button 
        className={`cta-button ${buttonProps.color} ${buttonProps.size}`}
        onClick={() => {
          // Track conversion event
          Journium.track('cta_clicked', {
            test_name: 'homepage_hero_test',
            variant: variant,
            button_text: buttonProps.text
          });
          
          // Navigate to signup
          navigateToSignup();
        }}
      >
        {buttonProps.text}
      </button>
    </section>
  );
}

Feature Flag Integration

// Combine feature flags with A/B testing
const testConfiguration = {
  testName: 'new_checkout_flow',
  
  // Only run test if feature flag is enabled
  enabled: featureFlags.checkout_v2_enabled,
  
  variants: [
    {
      name: 'control',
      description: 'Current checkout flow',
      weight: 50
    },
    {
      name: 'treatment',
      description: 'New streamlined checkout',
      weight: 50
    }
  ],
  
  // Gradual rollout strategy
  rolloutStrategy: {
    week1: { treatment: 10, control: 90 },
    week2: { treatment: 25, control: 75 },
    week3: { treatment: 50, control: 50 },
    // Increase treatment traffic if results are positive
  }
};

Statistical Analysis

Sample Size Calculation

// Calculate required sample size for statistical significance
const calculateSampleSize = (params) => {
  const {
    baselineRate = 0.05,        // Current conversion rate (5%)
    minimumDetectableEffect = 0.2, // 20% relative improvement
    alpha = 0.05,               // Type I error rate (5%)
    beta = 0.2,                 // Type II error rate (20%, power = 80%)
    variants = 2                // Number of variants
  } = params;
  
  const effectSize = baselineRate * minimumDetectableEffect;
  const z_alpha = 1.96; // Z-score for 95% confidence
  const z_beta = 0.84;  // Z-score for 80% power
  
  const sampleSizePerVariant = Math.ceil(
    (2 * Math.pow(z_alpha + z_beta, 2) * baselineRate * (1 - baselineRate)) /
    Math.pow(effectSize, 2)
  );
  
  return {
    sampleSizePerVariant,
    totalSampleSize: sampleSizePerVariant * variants,
    estimatedDuration: Math.ceil(sampleSizePerVariant / (dailyTraffic / variants)) + ' days'
  };
};

// Example calculation
const sampleSize = calculateSampleSize({
  baselineRate: 0.034,     // 3.4% current conversion rate
  minimumDetectableEffect: 0.15, // Want to detect 15% improvement
  dailyTraffic: 1000       // 1000 visitors per day
});

console.log(sampleSize);
// Output: { sampleSizePerVariant: 4842, totalSampleSize: 9684, estimatedDuration: '10 days' }

Results Analysis

// Analyze test results with statistical significance
const analyzeTestResults = (testData) => {
  const { control, treatment } = testData;
  
  // Calculate conversion rates
  const controlRate = control.conversions / control.visitors;
  const treatmentRate = treatment.conversions / treatment.visitors;
  
  // Calculate improvement
  const relativeImprovement = (treatmentRate - controlRate) / controlRate;
  const absoluteImprovement = treatmentRate - controlRate;
  
  // Statistical significance test (Chi-square)
  const pooledRate = (control.conversions + treatment.conversions) / 
                     (control.visitors + treatment.visitors);
  
  const standardError = Math.sqrt(
    pooledRate * (1 - pooledRate) * 
    (1/control.visitors + 1/treatment.visitors)
  );
  
  const zScore = (treatmentRate - controlRate) / standardError;
  const pValue = 2 * (1 - normalCDF(Math.abs(zScore))); // Two-tailed test
  
  // Confidence interval
  const marginOfError = 1.96 * standardError; // 95% confidence
  const confidenceInterval = [
    relativeImprovement - marginOfError/controlRate,
    relativeImprovement + marginOfError/controlRate
  ];
  
  return {
    controlConversionRate: controlRate,
    treatmentConversionRate: treatmentRate,
    relativeImprovement: relativeImprovement,
    absoluteImprovement: absoluteImprovement,
    pValue: pValue,
    isSignificant: pValue < 0.05,
    confidenceLevel: (1 - pValue) * 100,
    confidenceInterval: confidenceInterval,
    recommendation: pValue < 0.05 && relativeImprovement > 0 ? 
      'Implement treatment' : 'Continue testing or revert to control'
  };
};

Advanced Testing Features

Bayesian Testing

Alternative to traditional frequentist testing:
const bayesianTest = {
  testName: 'pricing_page_optimization',
  approach: 'bayesian',
  
  priors: {
    control: { alpha: 1, beta: 20 }, // Prior belief: ~5% conversion rate
    treatment: { alpha: 1, beta: 20 }
  },
  
  // Decision criteria
  decisionThreshold: {
    probabilityToBeatControl: 0.95, // 95% probability treatment is better
    minimumLift: 0.1, // At least 10% improvement
    minimumSampleSize: 500
  },
  
  // Advantages: Earlier decision making, better handling of multiple variants
  earlyStoppingEnabled: true
};

Multi-Armed Bandit Testing

Automatically allocate more traffic to better-performing variants:
const banditTest = {
  testName: 'dynamic_cta_optimization',
  algorithm: 'epsilon_greedy', // or 'thompson_sampling', 'ucb1'
  
  variants: [
    { name: 'blue_button', initialWeight: 25 },
    { name: 'orange_button', initialWeight: 25 },
    { name: 'green_button', initialWeight: 25 },
    { name: 'red_button', initialWeight: 25 }
  ],
  
  exploration: {
    epsilon: 0.1, // 10% exploration, 90% exploitation
    decayRate: 0.99 // Reduce exploration over time
  },
  
  // Automatically shift traffic to winning variants
  autoOptimize: true,
  minConfidenceForShift: 0.8
};

Holdout Testing

Validate overall testing program impact:
const holdoutTest = {
  name: 'testing_program_validation',
  description: 'Measure impact of entire A/B testing program',
  
  allocation: {
    testing_group: 90,  // 90% of users see A/B tests
    holdout_group: 10   // 10% never see any tests (control group)
  },
  
  // Compare overall metrics between groups
  metrics: [
    'overall_conversion_rate',
    'revenue_per_visitor',
    'customer_lifetime_value',
    'user_satisfaction_score'
  ],
  
  duration: '6_months' // Long-term validation
};

Testing Best Practices

1. Test One Variable at a Time

// ✅ Good: Test single variable
const focusedTest = {
  testName: 'headline_optimization',
  variable: 'headline_text',
  variants: [
    'Increase Your Sales Today',
    'Double Your Revenue in 30 Days'
  ]
};

// ❌ Avoid: Testing multiple variables simultaneously
const confusedTest = {
  testName: 'everything_test',
  changes: [
    'headline_text',
    'button_color', 
    'page_layout',
    'pricing_display',
    'testimonials'
  ]
  // Hard to determine what caused the change
};

2. Set Clear Success Metrics

// ✅ Good: Clear, measurable goals
const clearTest = {
  primaryMetric: 'email_signup_rate',
  secondaryMetrics: [
    'click_through_rate',
    'time_on_page',
    'bounce_rate'
  ],
  businessImpact: 'increase_lead_generation'
};

// ❌ Avoid: Vague metrics
const vagueTest = {
  goal: 'make_page_better',
  metrics: ['engagement', 'user_experience']
  // Too subjective and hard to measure
};

3. Ensure Sufficient Sample Size

// Calculate and validate sample size before starting
const validateSampleSize = (testConfig) => {
  const requiredSampleSize = calculateSampleSize(testConfig);
  const dailyTraffic = getCurrentDailyTraffic();
  const estimatedDuration = requiredSampleSize.totalSampleSize / dailyTraffic;
  
  if (estimatedDuration > 30) {
    console.warn(`Test will take ${Math.ceil(estimatedDuration)} days. Consider:`);
    console.warn('- Increasing traffic to the test page');
    console.warn('- Reducing minimum detectable effect');
    console.warn('- Testing on higher-traffic pages');
  }
  
  return requiredSampleSize;
};

4. Avoid Peeking at Results

// Set up proper test monitoring without frequent peeking
const testMonitoring = {
  checkFrequency: 'weekly', // Not daily
  earlyStoppingRules: {
    minSampleSize: 1000,
    minTestDuration: 7, // days
    maxTestDuration: 30
  },
  
  significanceCheck: (results) => {
    // Only check significance after minimum requirements are met
    if (results.sampleSize < testMonitoring.earlyStoppingRules.minSampleSize) {
      return { canStop: false, reason: 'insufficient_sample_size' };
    }
    
    if (results.duration < testMonitoring.earlyStoppingRules.minTestDuration) {
      return { canStop: false, reason: 'insufficient_duration' };
    }
    
    return { 
      canStop: results.pValue < 0.05 && results.confidenceLevel > 95,
      reason: 'significant_result'
    };
  }
};

5. Document Everything

// Maintain detailed test documentation
const testDocumentation = {
  testId: 'homepage_cta_v3',
  hypothesis: 'Changing CTA button from blue to orange will increase conversions because orange creates more urgency',
  
  implementation: {
    startDate: '2024-01-15',
    endDate: '2024-01-29',
    trafficSplit: '50/50',
    targetPages: ['/'],
    excludedUsers: ['employees', 'bots']
  },
  
  results: {
    winner: 'treatment',
    improvement: 0.187, // 18.7%
    confidence: 97.2,
    businessImpact: '$12,450 additional monthly revenue'
  },
  
  lessons: [
    'Orange buttons perform better on our homepage',
    'Urgency-focused messaging resonates with our audience',
    'Mobile users showed even higher improvement (24.3%)'
  ],
  
  nextSteps: [
    'Implement orange buttons site-wide',
    'Test urgency messaging in email campaigns',
    'Investigate mobile-specific optimizations'
  ]
};

Test Management Dashboard

Test Portfolio Overview

const testPortfolio = {
  active_tests: 3,
  completed_tests: 12,
  total_uplift: 0.23, // 23% overall improvement
  
  current_tests: [
    {
      name: 'checkout_flow_v2',
      status: 'running',
      progress: 0.65, // 65% complete
      early_results: 'promising',
      estimated_completion: '2024-02-01'
    },
    {
      name: 'pricing_page_layout',
      status: 'running',
      progress: 0.23,
      early_results: 'inconclusive',
      estimated_completion: '2024-02-15'
    }
  ],
  
  upcoming_tests: [
    {
      name: 'mobile_navigation',
      planned_start: '2024-02-05',
      priority: 'high',
      expected_impact: 'medium'
    }
  ]
};

Automated Test Reporting

// Set up automated weekly test reports
const automatedReporting = {
  schedule: 'every_monday_9am',
  recipients: ['[email protected]', '[email protected]'],
  
  reportContent: {
    testSummary: true,
    significantResults: true,
    recommendedActions: true,
    upcomingTests: true,
    portfolioPerformance: true
  },
  
  emailTemplate: `
    Weekly A/B Testing Report - Week of {{date}}
    
    🎯 Active Tests: {{active_count}}
    📊 Completed Tests: {{completed_count}}  
    📈 Portfolio Uplift: {{total_uplift}}%
    
    {{#significant_results}}
    🏆 Significant Results:
    {{#each results}}
    - {{test_name}}: {{improvement}}% improvement ({{confidence}}% confidence)
    {{/each}}
    {{/significant_results}}
    
    {{#recommended_actions}}
    🔧 Recommended Actions:
    {{#each actions}}
    - {{action}}
    {{/each}}
    {{/recommended_actions}}
  `
};

Integration with Other Tools

Google Optimize Integration

// Sync tests with Google Optimize
const googleOptimizeSync = {
  syncTests: async (journiumTests) => {
    for (const test of journiumTests) {
      // Create corresponding experiment in Google Optimize
      await createGoogleOptimizeExperiment({
        name: test.name,
        url: test.targetUrl,
        variants: test.variants,
        objective: test.primaryMetric
      });
    }
  },
  
  syncResults: async (testId) => {
    // Import results from Google Optimize
    const goResults = await getGoogleOptimizeResults(testId);
    
    // Combine with Journium data for comprehensive analysis
    const combinedResults = {
      journium_data: await getJourniumResults(testId),
      google_optimize_data: goResults,
      cross_validation: compareResults(journiumResults, goResults)
    };
    
    return combinedResults;
  }
};

Customer Data Platform Integration

// Sync test data with your CDP
const cdpIntegration = {
  syncTestExposures: (userId, testName, variant) => {
    // Send test exposure data to CDP
    CDP.track(userId, 'experiment_exposure', {
      experiment_name: testName,
      variant: variant,
      timestamp: Date.now(),
      source: 'journium'
    });
  },
  
  enrichWithUserData: async (testResults) => {
    // Enrich test results with additional user data
    const enrichedResults = await Promise.all(
      testResults.map(async (result) => {
        const userData = await CDP.getUser(result.userId);
        return {
          ...result,
          user_segment: userData.segment,
          lifetime_value: userData.ltv,
          acquisition_channel: userData.acquisition_channel
        };
      })
    );
    
    return enrichedResults;
  }
};

Next Steps