Overview
Journium’s A/B testing platform allows you to test different versions of your website elements to determine which performs better. Make data-driven decisions to optimize conversion rates, reduce bounce rates, and improve user engagement with statistical confidence.Getting Started with A/B Testing
What You Can Test
Journium allows you to test virtually any element on your website:Headlines & Copy
Test different headlines, descriptions, and call-to-action text
Button Design
Experiment with colors, sizes, text, and placement of buttons
Page Layout
Test different page structures and content arrangements
Forms
Optimize form fields, length, and validation messages
Images & Media
Test different hero images, videos, and visual elements
Pricing
Experiment with pricing strategies and presentation
Basic A/B Test Setup
Copy
// Initialize A/B test with Journium
Journium.createTest({
testName: 'homepage_hero_button',
description: 'Test CTA button color on homepage hero section',
// Define variants
variants: [
{
name: 'control',
description: 'Current blue button (#1E40AF)',
trafficAllocation: 50 // 50% of traffic
},
{
name: 'treatment',
description: 'New orange button (#EA580C)',
trafficAllocation: 50 // 50% of traffic
}
],
// Success metrics
primaryMetric: 'conversion_rate',
secondaryMetrics: ['click_through_rate', 'bounce_rate'],
// Test configuration
minimumSampleSize: 1000,
minimumDetectableEffect: 10, // 10% improvement
statisticalSignificance: 95,
maxDuration: 30 // days
});
Implementing Test Variants
Copy
// Check which variant the user should see
const variant = Journium.getTestVariant('homepage_hero_button');
// Apply the appropriate treatment
if (variant === 'treatment') {
// Show orange button
document.getElementById('hero-cta').style.backgroundColor = '#EA580C';
document.getElementById('hero-cta').textContent = 'Start Your Free Trial';
} else {
// Show control (blue button)
document.getElementById('hero-cta').style.backgroundColor = '#1E40AF';
document.getElementById('hero-cta').textContent = 'Get Started';
}
// Track the exposure
Journium.track('ab_test_exposure', {
test_name: 'homepage_hero_button',
variant: variant,
user_id: getCurrentUserId(),
session_id: getSessionId()
});
Advanced Testing Strategies
Multivariate Testing
Test multiple elements simultaneously to understand interactions:Copy
const multivariateTest = {
testName: 'checkout_optimization',
description: 'Test multiple checkout page elements',
variables: [
{
name: 'headline',
variants: [
'Complete Your Purchase',
'Secure Checkout',
'Almost Done!'
]
},
{
name: 'button_color',
variants: ['blue', 'green', 'orange']
},
{
name: 'trust_signals',
variants: ['badges_visible', 'badges_hidden']
}
],
// This creates 3 × 3 × 2 = 18 different combinations
trafficAllocation: 'equal', // Equal traffic to all variants
primaryMetric: 'checkout_completion_rate'
};
Sequential Testing
Run tests in sequence to compound improvements:Copy
const testingSequence = [
{
phase: 1,
test: 'homepage_headline',
duration: 2, // weeks
expectedUplift: 15
},
{
phase: 2,
test: 'cta_button_design',
duration: 2,
expectedUplift: 12,
baseline: 'phase_1_winner' // Use phase 1 results as new baseline
},
{
phase: 3,
test: 'social_proof_placement',
duration: 3,
expectedUplift: 8,
baseline: 'phase_2_winner'
}
];
// Expected compound improvement: ~38% total uplift
Personalized Testing
Run different tests for different user segments:Copy
const personalizedTesting = {
segments: [
{
name: 'new_visitors',
criteria: 'session_count === 1',
tests: [
{
name: 'new_user_onboarding',
focus: 'explanation_and_trust_building'
}
]
},
{
name: 'returning_customers',
criteria: 'purchase_count > 0',
tests: [
{
name: 'loyalty_program_promotion',
focus: 'retention_and_upselling'
}
]
},
{
name: 'mobile_users',
criteria: 'device_type === "mobile"',
tests: [
{
name: 'mobile_checkout_optimization',
focus: 'touch_friendly_design'
}
]
}
]
};
Test Implementation Patterns
React Component Testing
Copy
import { useJourniumTest } from '@journium/react';
function HeroSection() {
const { variant, isReady } = useJourniumTest('homepage_hero_test');
if (!isReady) {
return <div>Loading...</div>;
}
const getButtonProps = () => {
switch (variant) {
case 'variant_a':
return {
color: 'blue',
text: 'Get Started',
size: 'large'
};
case 'variant_b':
return {
color: 'orange',
text: 'Start Free Trial',
size: 'large'
};
case 'variant_c':
return {
color: 'green',
text: 'Try It Now',
size: 'extra-large'
};
default:
return {
color: 'blue',
text: 'Get Started',
size: 'large'
};
}
};
const buttonProps = getButtonProps();
return (
<section className="hero">
<h1>Transform Your Business Today</h1>
<p>Join thousands of companies that trust our solution</p>
<button
className={`cta-button ${buttonProps.color} ${buttonProps.size}`}
onClick={() => {
// Track conversion event
Journium.track('cta_clicked', {
test_name: 'homepage_hero_test',
variant: variant,
button_text: buttonProps.text
});
// Navigate to signup
navigateToSignup();
}}
>
{buttonProps.text}
</button>
</section>
);
}
Feature Flag Integration
Copy
// Combine feature flags with A/B testing
const testConfiguration = {
testName: 'new_checkout_flow',
// Only run test if feature flag is enabled
enabled: featureFlags.checkout_v2_enabled,
variants: [
{
name: 'control',
description: 'Current checkout flow',
weight: 50
},
{
name: 'treatment',
description: 'New streamlined checkout',
weight: 50
}
],
// Gradual rollout strategy
rolloutStrategy: {
week1: { treatment: 10, control: 90 },
week2: { treatment: 25, control: 75 },
week3: { treatment: 50, control: 50 },
// Increase treatment traffic if results are positive
}
};
Statistical Analysis
Sample Size Calculation
Copy
// Calculate required sample size for statistical significance
const calculateSampleSize = (params) => {
const {
baselineRate = 0.05, // Current conversion rate (5%)
minimumDetectableEffect = 0.2, // 20% relative improvement
alpha = 0.05, // Type I error rate (5%)
beta = 0.2, // Type II error rate (20%, power = 80%)
variants = 2 // Number of variants
} = params;
const effectSize = baselineRate * minimumDetectableEffect;
const z_alpha = 1.96; // Z-score for 95% confidence
const z_beta = 0.84; // Z-score for 80% power
const sampleSizePerVariant = Math.ceil(
(2 * Math.pow(z_alpha + z_beta, 2) * baselineRate * (1 - baselineRate)) /
Math.pow(effectSize, 2)
);
return {
sampleSizePerVariant,
totalSampleSize: sampleSizePerVariant * variants,
estimatedDuration: Math.ceil(sampleSizePerVariant / (dailyTraffic / variants)) + ' days'
};
};
// Example calculation
const sampleSize = calculateSampleSize({
baselineRate: 0.034, // 3.4% current conversion rate
minimumDetectableEffect: 0.15, // Want to detect 15% improvement
dailyTraffic: 1000 // 1000 visitors per day
});
console.log(sampleSize);
// Output: { sampleSizePerVariant: 4842, totalSampleSize: 9684, estimatedDuration: '10 days' }
Results Analysis
Copy
// Analyze test results with statistical significance
const analyzeTestResults = (testData) => {
const { control, treatment } = testData;
// Calculate conversion rates
const controlRate = control.conversions / control.visitors;
const treatmentRate = treatment.conversions / treatment.visitors;
// Calculate improvement
const relativeImprovement = (treatmentRate - controlRate) / controlRate;
const absoluteImprovement = treatmentRate - controlRate;
// Statistical significance test (Chi-square)
const pooledRate = (control.conversions + treatment.conversions) /
(control.visitors + treatment.visitors);
const standardError = Math.sqrt(
pooledRate * (1 - pooledRate) *
(1/control.visitors + 1/treatment.visitors)
);
const zScore = (treatmentRate - controlRate) / standardError;
const pValue = 2 * (1 - normalCDF(Math.abs(zScore))); // Two-tailed test
// Confidence interval
const marginOfError = 1.96 * standardError; // 95% confidence
const confidenceInterval = [
relativeImprovement - marginOfError/controlRate,
relativeImprovement + marginOfError/controlRate
];
return {
controlConversionRate: controlRate,
treatmentConversionRate: treatmentRate,
relativeImprovement: relativeImprovement,
absoluteImprovement: absoluteImprovement,
pValue: pValue,
isSignificant: pValue < 0.05,
confidenceLevel: (1 - pValue) * 100,
confidenceInterval: confidenceInterval,
recommendation: pValue < 0.05 && relativeImprovement > 0 ?
'Implement treatment' : 'Continue testing or revert to control'
};
};
Advanced Testing Features
Bayesian Testing
Alternative to traditional frequentist testing:Copy
const bayesianTest = {
testName: 'pricing_page_optimization',
approach: 'bayesian',
priors: {
control: { alpha: 1, beta: 20 }, // Prior belief: ~5% conversion rate
treatment: { alpha: 1, beta: 20 }
},
// Decision criteria
decisionThreshold: {
probabilityToBeatControl: 0.95, // 95% probability treatment is better
minimumLift: 0.1, // At least 10% improvement
minimumSampleSize: 500
},
// Advantages: Earlier decision making, better handling of multiple variants
earlyStoppingEnabled: true
};
Multi-Armed Bandit Testing
Automatically allocate more traffic to better-performing variants:Copy
const banditTest = {
testName: 'dynamic_cta_optimization',
algorithm: 'epsilon_greedy', // or 'thompson_sampling', 'ucb1'
variants: [
{ name: 'blue_button', initialWeight: 25 },
{ name: 'orange_button', initialWeight: 25 },
{ name: 'green_button', initialWeight: 25 },
{ name: 'red_button', initialWeight: 25 }
],
exploration: {
epsilon: 0.1, // 10% exploration, 90% exploitation
decayRate: 0.99 // Reduce exploration over time
},
// Automatically shift traffic to winning variants
autoOptimize: true,
minConfidenceForShift: 0.8
};
Holdout Testing
Validate overall testing program impact:Copy
const holdoutTest = {
name: 'testing_program_validation',
description: 'Measure impact of entire A/B testing program',
allocation: {
testing_group: 90, // 90% of users see A/B tests
holdout_group: 10 // 10% never see any tests (control group)
},
// Compare overall metrics between groups
metrics: [
'overall_conversion_rate',
'revenue_per_visitor',
'customer_lifetime_value',
'user_satisfaction_score'
],
duration: '6_months' // Long-term validation
};
Testing Best Practices
1. Test One Variable at a Time
Copy
// ✅ Good: Test single variable
const focusedTest = {
testName: 'headline_optimization',
variable: 'headline_text',
variants: [
'Increase Your Sales Today',
'Double Your Revenue in 30 Days'
]
};
// ❌ Avoid: Testing multiple variables simultaneously
const confusedTest = {
testName: 'everything_test',
changes: [
'headline_text',
'button_color',
'page_layout',
'pricing_display',
'testimonials'
]
// Hard to determine what caused the change
};
2. Set Clear Success Metrics
Copy
// ✅ Good: Clear, measurable goals
const clearTest = {
primaryMetric: 'email_signup_rate',
secondaryMetrics: [
'click_through_rate',
'time_on_page',
'bounce_rate'
],
businessImpact: 'increase_lead_generation'
};
// ❌ Avoid: Vague metrics
const vagueTest = {
goal: 'make_page_better',
metrics: ['engagement', 'user_experience']
// Too subjective and hard to measure
};
3. Ensure Sufficient Sample Size
Copy
// Calculate and validate sample size before starting
const validateSampleSize = (testConfig) => {
const requiredSampleSize = calculateSampleSize(testConfig);
const dailyTraffic = getCurrentDailyTraffic();
const estimatedDuration = requiredSampleSize.totalSampleSize / dailyTraffic;
if (estimatedDuration > 30) {
console.warn(`Test will take ${Math.ceil(estimatedDuration)} days. Consider:`);
console.warn('- Increasing traffic to the test page');
console.warn('- Reducing minimum detectable effect');
console.warn('- Testing on higher-traffic pages');
}
return requiredSampleSize;
};
4. Avoid Peeking at Results
Copy
// Set up proper test monitoring without frequent peeking
const testMonitoring = {
checkFrequency: 'weekly', // Not daily
earlyStoppingRules: {
minSampleSize: 1000,
minTestDuration: 7, // days
maxTestDuration: 30
},
significanceCheck: (results) => {
// Only check significance after minimum requirements are met
if (results.sampleSize < testMonitoring.earlyStoppingRules.minSampleSize) {
return { canStop: false, reason: 'insufficient_sample_size' };
}
if (results.duration < testMonitoring.earlyStoppingRules.minTestDuration) {
return { canStop: false, reason: 'insufficient_duration' };
}
return {
canStop: results.pValue < 0.05 && results.confidenceLevel > 95,
reason: 'significant_result'
};
}
};
5. Document Everything
Copy
// Maintain detailed test documentation
const testDocumentation = {
testId: 'homepage_cta_v3',
hypothesis: 'Changing CTA button from blue to orange will increase conversions because orange creates more urgency',
implementation: {
startDate: '2024-01-15',
endDate: '2024-01-29',
trafficSplit: '50/50',
targetPages: ['/'],
excludedUsers: ['employees', 'bots']
},
results: {
winner: 'treatment',
improvement: 0.187, // 18.7%
confidence: 97.2,
businessImpact: '$12,450 additional monthly revenue'
},
lessons: [
'Orange buttons perform better on our homepage',
'Urgency-focused messaging resonates with our audience',
'Mobile users showed even higher improvement (24.3%)'
],
nextSteps: [
'Implement orange buttons site-wide',
'Test urgency messaging in email campaigns',
'Investigate mobile-specific optimizations'
]
};
Test Management Dashboard
Test Portfolio Overview
Copy
const testPortfolio = {
active_tests: 3,
completed_tests: 12,
total_uplift: 0.23, // 23% overall improvement
current_tests: [
{
name: 'checkout_flow_v2',
status: 'running',
progress: 0.65, // 65% complete
early_results: 'promising',
estimated_completion: '2024-02-01'
},
{
name: 'pricing_page_layout',
status: 'running',
progress: 0.23,
early_results: 'inconclusive',
estimated_completion: '2024-02-15'
}
],
upcoming_tests: [
{
name: 'mobile_navigation',
planned_start: '2024-02-05',
priority: 'high',
expected_impact: 'medium'
}
]
};
Automated Test Reporting
Copy
// Set up automated weekly test reports
const automatedReporting = {
schedule: 'every_monday_9am',
recipients: ['[email protected]', '[email protected]'],
reportContent: {
testSummary: true,
significantResults: true,
recommendedActions: true,
upcomingTests: true,
portfolioPerformance: true
},
emailTemplate: `
Weekly A/B Testing Report - Week of {{date}}
🎯 Active Tests: {{active_count}}
📊 Completed Tests: {{completed_count}}
📈 Portfolio Uplift: {{total_uplift}}%
{{#significant_results}}
🏆 Significant Results:
{{#each results}}
- {{test_name}}: {{improvement}}% improvement ({{confidence}}% confidence)
{{/each}}
{{/significant_results}}
{{#recommended_actions}}
🔧 Recommended Actions:
{{#each actions}}
- {{action}}
{{/each}}
{{/recommended_actions}}
`
};
Integration with Other Tools
Google Optimize Integration
Copy
// Sync tests with Google Optimize
const googleOptimizeSync = {
syncTests: async (journiumTests) => {
for (const test of journiumTests) {
// Create corresponding experiment in Google Optimize
await createGoogleOptimizeExperiment({
name: test.name,
url: test.targetUrl,
variants: test.variants,
objective: test.primaryMetric
});
}
},
syncResults: async (testId) => {
// Import results from Google Optimize
const goResults = await getGoogleOptimizeResults(testId);
// Combine with Journium data for comprehensive analysis
const combinedResults = {
journium_data: await getJourniumResults(testId),
google_optimize_data: goResults,
cross_validation: compareResults(journiumResults, goResults)
};
return combinedResults;
}
};
Customer Data Platform Integration
Copy
// Sync test data with your CDP
const cdpIntegration = {
syncTestExposures: (userId, testName, variant) => {
// Send test exposure data to CDP
CDP.track(userId, 'experiment_exposure', {
experiment_name: testName,
variant: variant,
timestamp: Date.now(),
source: 'journium'
});
},
enrichWithUserData: async (testResults) => {
// Enrich test results with additional user data
const enrichedResults = await Promise.all(
testResults.map(async (result) => {
const userData = await CDP.getUser(result.userId);
return {
...result,
user_segment: userData.segment,
lifetime_value: userData.ltv,
acquisition_channel: userData.acquisition_channel
};
})
);
return enrichedResults;
}
};